
Topology aware Cartesian grid mapping with MPI

Christoph Niethammer
High-Performance Computing Center Stuttgart

Stuttgart, Germany
niethammer@hlrs.de

Rolf Rabenseifner
High-Performance Computing Center Stuttgart

Stuttgart, Germany
rabenseifner@hlrs.de

CCS CONCEPTS

• Computing methodologies → Parallel programming
languages;

KEYWORDS

MPI, distributed programming, performance, grid, mapping

ACM Reference Format:

Christoph Niethammer and Rolf Rabenseifner. 2018. Topology
aware Cartesian grid mapping with MPI. In Proceedings of Eu-
roMPI 2018 . ACM, New York, NY, USA, 3 pages.

1 INTRODUCTION

Many scientific applications perform computations on a Carte-
sian grid. The common approach for the parallelization of
these applications with MPI is domain decomposition. To
help developers with the mapping of MPI processes to sub-
domains, the MPI standard provides the concept of process
topologies. For Cartesian type topologies two useful functions
are MPI_Dims_create and MPI_Cart_create. While the first
function helps finding a factorization for a Cartesian process
grid from a given number of processes, the second function
creates an MPI Cartesian communicator from a given Carte-
sian process grid. However, this interface requires care in
its usage as neither MPI_Dims_create takes into account the
application topology nor MPI_Cart_create takes care of the
underlying network topology and node architecture of the sys-
tem. This becomes a problem for today’s multi node NUMA
systems because of the limited communication bandwidth at
the different hardware levels, namely inter-node, inter-socket
and inter-core.

Figure 1 shows different communication schemes (a) and
the corresponding duplex accumulated ring bandwidth per
node (b) for varying number of processes per node and process
placements. Obviously, the limit of accumulated intra-CPU
and intra-node bandwidth (green and blue) is 8x larger than
the limit of accumulated node-to-node bandwidth (red and
purple). To achieve good performance it is therefore essential
to make a better (or the best) usage of the available band-
width at the different levels: The inter-node communication
must be reduced in favor of the intra-node communication.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EuroMPI 2018, September 2018, Barcelona, Spain

© 2018 Copyright held by the owner/author(s).

(a) Communication schemes

in
tr
a
-n
o
d
e

in
te
r-
n
o
d
e

x8

(b) Duplex accumulated bandwidth per node

Figure 1: Duplex accumulated bandwidth bench-
mark: Messages are send bidirectionally in rings.

At this point, there are two problems with the MPI API:
First, MPI_Dims_create computes only a grid with dimen-
sions as close together as possible, e.g., based on the algorithm
in [4]. If the underlying grid of a simulation is not close to a
quadratic shape, the decomposition becomes non-optimal[1].
Figure 2 shows an example of a 1800×580 grid, which shall be
distributed on 12 processors. MPI_Dims_create will suggest
a 4× 3 decomposition, however, a 6× 2 decomposition would
be optimal, as it leads to close to quadratic subdomains.

The second problem arises from not optimized implemen-
tations of MPI_Cart_create, which map processes linearly to
the processor grid as shown in the left of Figure 3. This leads
to unnecessary high numbers of slow inter-node communi-
cation. For comparison, an optimized mapping, which takes
into account the network topology and system architecture,



EuroMPI 2018, September 2018, Barcelona, Spain Christoph Niethammer and Rolf Rabenseifner

1800
600

5
8
0

1
4
5

1800
300

5
8
0

2
9
0

Figure 2: Decomposition of a grid with 1800 × 590
grid points onto 12 processes. Left: Suggestion from
MPI_Dims_create, Right: Optimal distribution.

Figure 3: Process mapping to nodes, sockets and
cores. Left: Non-optimal default mapping behaviour
of MPI_Cart_create, Right: Optimized placement sug-
gested by the multi level decomposition in this work.

is shown in the right. Generally, this mapping problem is
non-trivial as shown in [3].

Both problems are closely coupled and therefore have to
be solved together.

2 MAPPING STRATEGY

Hereinafter, the application topology is given as a 𝑑-dimensional
Cartesian grid with a total of 𝑇 =

∏︀𝑑
𝑖=1 𝑡𝑖 elements, where

𝑡𝑖 are the grid dimensions in directions 𝑖 ∈ [1, 𝑑]. The target
system shall consist of nodes with 𝑃 cores per node.

To achieve an optimal domain decomposition and MPI
process mapping for a given hardware topology, we present
in the following a new multi level optimization approach.
The benchmark in Figure 1 shows that the node-to-node
communication is dominant for the whole communication
overhead. Therefore, this communication must be minimized
first, i.e., the approach starts with the node level and ends
with the core level.

2.1 Grid decomposition at the node level

The application shall be run on 𝑁 nodes. For the domain
decomposition nodes, it will form a 𝑑-dimensional Cartesian
node topology with 𝑛𝑖 nodes in the 𝑖-th dimension. It is

𝑁 =

𝑑∏︁
𝑖=1

𝑛𝑖 . (1)

The communication of the application requires for each
node the exchange of halo data with it’s neighbours. The

amount of data to be transferred depends on the subdomain
surface determined by it’s dimensions, so that the communi-
cation costs 𝑐 can be described as

𝑐 = 2

𝑑∑︁
𝑖=1

𝑑∏︁
𝑗=1
𝑗 ̸=𝑖

𝑡𝑗
𝑛𝑗

= 2
𝑇

𝑁

𝑑∑︁
𝑖=1

𝑛𝑖

𝑡𝑖
. (2)

The goal is now to reduce the inter node communication
costs. This is achieved by finding a set (𝑛𝑖), which minimizes
the sum in (2) under the condition (1).

2.2 Grid decomposition at the core level

After achieving an optimized node mapping, the same ap-
proach is applied at the next hardware topology level for
the subdomains. The subgrid at the new level has the grid
dimensions 𝑡′𝑖 = 𝑡𝑖/𝑛𝑖. Taking the core level as the next level,
we construct a Cartesian core topology with dimensions 𝑝𝑖.
The communication costs 𝑐′ at this level are now given by

𝑐′ = 2
𝑇 ′

𝑃

𝑑∑︁
𝑖=1

𝑝𝑖
𝑡′𝑖

= 2
𝑇

𝑁𝑃

𝑑∑︁
𝑖=1

𝑛𝑖𝑝𝑖
𝑡𝑖

with 𝑃 =

𝑑∏︁
𝑖=1

𝑝𝑖 . (3)

Again, we search a set (𝑝𝑖) that minimizes the term in (3).

2.3 Multi level decomposition

The approach shown so far for the node and core level can be
applied hierarchically to any number of hardware topology
levels by subsequentially minimizing the communication costs

𝑐(𝑙) = 2
𝑇∏︀𝑙

𝑘=1 𝑁
(𝑘)

𝑑∑︁
𝑖=1

∏︀𝑙
𝑘=1 𝑛

(𝑘)
𝑖

𝑡𝑖
with 𝑁 (𝑙) =

𝑑∏︁
𝑖=1

𝑛
(𝑙)
𝑖 , (4)

starting from node level 𝑙 = 1. A result is shown in Figure 3.
Based on this decomposition then a rank reordering can

be preformed to create a new optimized MPI communicator.
A first implementation1 showed execution times in the

order of Jesper Träff’s algorithm [4]. The implementation of
the rank mapping and the creation of the Cartesian commu-
nicator can be implemented according to [2]

3 SUMMARY

In this work, we present a new approach to optimize the
domain decomposition in MPI applications, which perform
computations on a Cartesian grid. Our approach takes into ac-
count the computational grid as well as the hardware topology
to optimize inter-process communication. The optimization
criteria is the minimization of slow bandwidth communication
and is applied hierarchically to the different hardware layers.
Based on our generalized approach, we intend to propose the
addition of a new API to the MPI standard, which helps to
create communicators for such scenarios.

1Our poster and a free implementation in a form suitable for MPI
libraries is available at fs.hlrs.de/projects/par/mpi/EuroMPI2018-
Cartesian



Topology aware Cartesian grid mapping with MPI EuroMPI 2018, September 2018, Barcelona, Spain

REFERENCES
[1] Pavan Balaji et al. 2009-2012. Topology awareness in

MPI Dims create. https://github.com/mpi-forum/mpi-forum-
historic/issues/195. Accessed 2018-07-19.

[2] Bill Gropp. 2018. Using Node Information to Implement MPI
Cartesian Topologies. In Proceedings of the 25th European MPI
Users’ Group Meeting (EuroMPI ’18). ACM, New York, NY,
USA.

[3] T. Hoefler and M. Snir. 2011. Generic Topology Mapping Strategies
for Large-scale Parallel Architectures. In Proceedings of the 2011
ACM International Conference on Supercomputing (ICS’11).
ACM, 75–85.

[4] Jesper Larsson Träff and Felix Donatus Lübbe. 2015. Specification
Guideline Violations by MPI Dims Create. In Proceedings of the
22nd European MPI Users’ Group Meeting (EuroMPI ’15). ACM,
New York, NY, USA, Article 19, 2 pages.


	1 Introduction
	2 Mapping Strategy
	2.1 Grid decomposition at the node level
	2.2 Grid decomposition at the core level
	2.3 Multi level decomposition

	3 Summary
	References

