Making the Case for Portable MPI Process Pinning

Balazs Gerofi Rolf Riesen Yutaka Ishikawa
RIKEN R-CCS Intel Corporation RIKEN R-CCS
JAPAN USA JAPAN
bgerofi@riken.jp rolf riesen@intel.com yutaka.ishikawa@riken.jp
ABSTRACT Most MPI implementations provide interfaces for process pin-

As architectural complexity of node resources in high-performance
computing (HPC) keeps increasing, topology aware process place-
ment becomes utmost important for efficiently utilizing the un-
derlying hardware. Although most MPI implementations provide
interfaces to control process placement, existing APIs are fully
implementation specific and non-standard solutions, leading to
non-portable job scripts among different MPI environments. Fur-
thermore, most of the existing APIs provide overly intricate and
often redundant process pinning mechanisms.

In this poster we propose mpipin, an MPI implementation agnos-
tic process pinning tool that provides a simple, intuitive interface for
deterministic resource assignment. We describe mpipin’s API, its
topology aware design and implementation. Through experiments,
we demonstrate its ability to provide identical process pinning be-
haviour in Intel MPI, MVAPICH and Open MPI environments using
the same command line invocation.

ACM Reference format:

Balazs Gerofi, Rolf Riesen, and Yutaka Ishikawa. 2018. Making the Case
for Portable MPI Process Pinning. In Proceedings of EuroMPI ’18, Barcelona,
Spain, Sep, 2018, 2 pages.

DOI: http://dx.doi.org/10.1145/3095770.3095777

1 INTRODUCTION AND MOTIVATION

Complexity of node architecture in supercomputing environments
has increased significantly during the past decade. With the advent
of many-core CPUs and the prevalence of non-uniform memory
access (NUMA) architectures the presence of large number of CPU
cores with sophisticated hardware topology has become common-
place. For example, Intel’s Xeon Phi Knights Landing CPU in SNC-4
memory configuration can provide up to 272 CPU cores organized
around 8 NUMA domains [4].

In such environments, MPI jobs are typically executed with
multiple ranks inside compute nodes. Indeed, in our previous study
we found that most of the CORAL benchmarks [2] perform best
when run using 32 or 64 ranks per node on a large-scale, many-core
based supercomputer [3]. To efficiently utilize complex hardware
topologies, locality information must be carefully considered and
thus correctly placing MPI ranks on appropriate CPU cores has
become utmost important.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EuroMPI ’18, Barcelona, Spain

© 2018 ACM. 978-1-4503-5086-0/17/06...$15.00

DOI: http://dx.doi.org/10.1145/3095770.3095777

ning. For example, Intel MPI relies on the I_MPI_PIN environment
variable, together with I_MPI_PIN_ORDER and I_MPI_PIN_DOMAIN,
etc., to control process placement. MVAPICH supports process
binding when compiled with hwloc [1]. Some of the environment
variables to control process placement are: MV2_ENABLE_AFFINITY
toggles binding, and MV2_CPU_BINDING_POLICY can be used to-
gether with MV2_THREADS_PER_PROCESS to control pinning.

Open MPI, on the other hand, expects various command line ar-
guments to mpirun (e.g., the -bind-to core, or -bind-to socket,
etc.) so that processes are pinned to specific CPU cores. It also pro-
vides a long list of other options to enable fine grained control over
how exactly processes are mapped to CPUs.

Recognizing the chaotic landscape of available process place-
ment mechanisms among MPI implementations, certain batch job
systems provide their own native interfaces. For example the srun
command of the SLURM cluster resource manager [5] provides
the --cpu-bind argument with a wide variety of options to control
process binding. Needless to say, SLURM’s options are also different
than existing MPI based solutions.

In summary, there are multiple issues with the existing pinning
APIs and the lack of a unified interface thereof:

o Jobs scripts that rely on MPI implementation specific pin-
ning options are not portable among platforms using dif-
ferent MPI implementations.

Comparing performance between different MPI implemen-
tations is difficult, because one needs to ensure that process
pinning is performed exactly the same way in different en-
vironments.

Some of the existing APIs provide non-deterministic pro-
cess placement in subsequent executions with the same
pinning option which can lead to reproducibility problems.

To overcome these issues, we propose mpipin, an MPI imple-
mentation agnostic process pinning tool that provides a simple,
intuitive interface for resource assignment. Description of design
and implementation, together with a simple usage example com-
pared to Intel MPI, MVAPICH and OpenMPI are provided in the
rest of this document.

2 DESIGN AND IMPLEMENTATION

mpipin is a simple process pinning tool that provides an intuitive
interface and is completely independent from MPI implementa-
tions. mpipin merely relys on the fact that MPI ranks inside a node
are spawned by a common parent process (usually by the MPI
proxy process). A general usage example of mpipin is shown in
the following invocation:

mpirun -hostfile ~/hosts -n <N> -ppn <PPN> \
mpipin --ranks-per-node <PPN> app

EuroMPI ’18, Sep, 2018, Barcelona, Spain

As seen, mpipin is invoked before the application binary and
information on the desired process pinning policy is passed as com-
mand line arguments to the tool itself. Internally, mpipin processes
running on the same node synchronize at job startup time, elect
a leader process that creates a shared memory region which is
then mapped by all mpipin processes. The leader process collects
topology information and determines where each rank will have to
be placed. Processes are ordered by creation time and process ID
(i-e., the OS pid), which ensures that subsequent executions of the
same invocation places the same local rank to the same set of CPUs.
mpipin currently obtains topology information directly by parsing
the Linux sysf's file system where topology information related to
NUMA nodes, CPUs and caches is exposed. However, future usage
of an hwloc [1] based backend is being considered.

Once resources are partitioned by the leader, all processes are
woken up and each rank sets its processor affinity (simply by calling
the sched_setaffinity() system call) to its corresponding CPU
partition. From an MPI implementation’s point of view mpipin is
simply the application to be executed and thus it is easy to see how
it remains MPI implementation agnostic. The tool is still in its early
development phase and currently supports the following options:

e —processes-per-node, —-ranks-per-node, —ppn: Speci-
fies the number of MPI processes per node.

e —threads-per-process, —cores-per-process, —tpp: Spec-
ifies the number of threads (i.e., logical CPUs) per MPI
process.

e —compact: Follow a compact process layout (default).

o —scatter: Follow a scattered process layout.

e —exclude-cpus, —exclude-cores: Specifies a list of logical
CPUs to be excluded from resource partitioning.

We have determined these options based on our experience
with running a substantial number of mini- and actual applications
during a large scale evaluation [3]. The current default pinning
policy of mpipin is compact process layout, where each rank is
assigned a group of logical CPUs with the most local resources
shared (i.e., CPU cores that share resources in the order of caches
starting from L1 going higher, via sockets, and finally located in the
same NUMA node). The tool also supports scatter layout as well
as explicitly leaving out CPU cores that may be allocated for other
purposes (e.g., for OS activities).

3 DEMONSTRATION

We provide a comparative demonstration of process placement
using Intel MPI, MVAPICH and Open MPI. Consider the following
scenario where compute nodes consist of a two socket Intel Xeon
system with 14 CPU cores on each socket and 2 HW threads per
CPU core (i.e., an E5-2690 v4 system). When running a hybrid MPI
+ OpenMP program one may intend to run four ranks per node and
thus assign 7 CPU cores (i.e., 14 HW threads to each rank) laying
out processes next to each other. Using Intel MPI one would invoke
the following command:

Balazs Gerofi, Rolf Riesen, and Yutaka Ishikawa

mpirun -env MV2_ENABLE_AFFINITY=1 \
-env MV2_CPU_BINDING_POLICY=hybrid \
-env MV2_THREADS_PER_PROCESS=14 \
-env MV2_HYBRID_BINDING_POLICY=linear\
-n 4 -ppn 4 -host <host> app

Finally, in Open MPI one would need to use:

mpirun -map-by ppr:2:socket:pe=7 \
-np 4 -host <host>:4 app

mpirun -env I_MPI_PIN_DOMAIN=14 \
-env I_MPI_PIN_ORDER=compact \
-n 4 -ppn 4 -host <host> app

To achieve the same mapping in MVAPICH, the following com-
mand line is required:

Using mpipin, all the above examples could be reduced to the
same invocation as listed in Section 2 by simply replacing N and
PPN by 4. We intend to provide more representative examples in
the final poster.

4 RELATED WORK

hwloc [1] provides a library for exposing hardware locality infor-
mation in a portable manner. It also provides command line tools
for topology information processing and process pinning. Both
Open MPI and MVAPICH can utilize hwloc as their process bind-
ing backend. hwloc command line tools, however, can not be used
directly for MPI process pinning because each process is provided
its own private view of the topology.

One of the most similar frameworks to our proposal is LIK-
WID [6]. In particular, 1ikwid-mpirun provides a dedicated pin-
ning API that is translated by wrapper scripts to MPI implemen-
tation specific pinning options. The drawback of this approach is
that unless LIKWID provides support to the underlying MPI im-
plementation, the tool is not applicable. On the contrary, mpipin is
executed by the MPI job itself and thus it remains transparent to
the MPI implementation.

ACKNOWLEDGMENT

This work has been partially funded by MEXT’s program for the
Development and Improvement for the Next Generation Ultra High-
Speed Computer System, under its Subsidies for Operating the
Specific Advanced Large Research Facilities.

REFERENCES

[1] Francois Broquedis, Jérome Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,
Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. 2010.
hwloc: a Generic Framework for Managing Hardware Affinities in HPC Ap-
plications. In PDP 2010 - The 18th Euromicro International Conference on Par-
allel, Distributed and Network-Based Computing, IEEE (Ed.). Pisa, Italy. DOI:
https://doi.org/10.1109/PDP.2010.67

[2] CORAL. 2013. Benchmark Codes. https://asc.llnl.gov/CORAL-benchmarks/.
(Nov. 2013).

[3] Balazs Gerofi, Rolf Riesen, Masamichi Takagi, Taisuke Boku, Yutaka Ishikawa,
and Robert W. Wisniewski. 2018. Performance and Scalability of Lightweight
Multi-Kernel based Operating Systems. In 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS).

[4] James Jeffers, James Reinders, and Avinash Sodani. 2016. Intel Xeon Phi Processor
High Performance Programming: Knights Landing Edition 2Nd Edition (2nd ed.).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[5] Morris A. Jette, Andy B. Yoo, and Mark Grondona. 2002. SLURM: Simple Linux
Utility for Resource Management. In In Lecture Notes in Computer Science: Pro-
ceedings of Job Scheduling Strategies for Parallel Processing (JSSPP) 2003. Springer-
Verlag, 44-60.

[6] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A Lightweight
Performance-Oriented Tool Suite for x86 Multicore Environments. In Proceedings
of the 2010 39th International Conference on Parallel Processing Workshops (ICPPW
’10). IEEE Computer Society, Washington, DC, USA, 207-216. DOI :https://doi.
org/10.1109/ICPPW.2010.38

https://doi.org/10.1109/PDP.2010.67
https://asc.llnl.gov/CORAL-benchmarks/
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1109/ICPPW.2010.38

	Abstract
	1 Introduction and Motivation
	2 Design and Implementation
	3 Demonstration
	4 Related Work
	References

