Mellanox

TECHNOLOGIES

Introduction

A Process Management Interface (PMI) is the component
of the HPC software stack that is responsible for interaction
between a Resource Manager and a parallel application.

In all PMI versions existing to date, the informational ex-
change between RM and application is organized in the

form of a key-value database (KVDb) that has Put, Get
operations and API-specific synchronization primitives.

The PMI Exascale (PMIx) (pseudo)standard [1] provides

advanced capabilities to enable efficient bootstrapping of
applications on emerging exascale systems.

This work focuses on the problem of scalable distribution of
the job-level and application-specific data from PMIx server
to PMIx client at the application side.

PMIx KVDb access specifics

e Shared memory technology significantly improves
intra-node KVDDb access latency [2] for PMI1/2.

e PMIx relaxes synchronization assumptions guaran-
teed by PMI1/2 (on-demand key fetch feature).

e An extension of the approach proposed in [2] with
lock-based KV Db access coordination is required.

IMellanox Technologies, ’Intel, Inc.

PMIlx version and evaluation

e Considered PMIx version: 2.1

e For PMIx Get performance estimation a pmix perf
microbenchmark from PMIx distribution was used.

e Processes were mapped by adjacent logical CPUs
yielding gradual filling of a certain hardware resource
before using the next one.

e Logical CPUs selection: cores for Intel system, hard-
ware threads (hw threads) for IBM system.

PMIx Get ftast-path algorithm

® Perform a thread shift: transter of the control to PMIx
service thread (ensures the thread safety)

® Lock KVDb for reading.

© Attempt to fetch the requested key from the shared mem-
ory.

o Unlock KVDb.

The curve pmiz/v2.1 on figures 1 and 2 represents the
erowth of PMIx Get operation latency on IBM and Intel
systems.

On both systems latency grows significantly with number
of PMIx clients.

A Scalable PMIx Database

Artem Y. Polyakov!, Joshua Ladd!, Elena Shipunova?, Boris |. Karasev

1

PMIx Get fastpath optimizations

Profiling of PMIx Get showed that locking (steps 2 and 4,
see PMIx Get fastpath) is the bottleneck.

However, we start with a set of code cleanup optimizations
of obvious inefficiencies on step (3) in order to isolate and
attribute subsequent improvements to an improved locking
scheme.

o [irst, we eliminated thread shifting (step 1) from the
fast path of the Get algorithm as the shared memory
component does not access the global state of PMIx.

e Second, we removed unneeded memory allocations on the

critical path replacing them with pre-allocated objects
provided by PMIx Get caller.

The curve fastp-opt (figures 1 and 2) corresponds to PMIx
version 2.1 extended with optimizations above.

Existing locking scheme limitations

PMIx utilizes Pthread Read/Write locks (RW-locks) to
ensure that clients read accesses are consistent with the

server-side updates (write access).

As demonstrated by the curves pmix/2.1 and fastp-
opt, this approach does not scale well with the number

of application processes/PMIx clients (usually defined
by available logical CPUs).

1000 C I I I I | | | i 18 | | | | |
---""'----‘ 16 - i
I e r T L L Ll
i |
o t““‘\"' 14 - ““’ |
an® R4
II""-"- .oo"
w"’ ‘0”
100 | “‘¢::o - 12 o |
- ““ﬂ . ’0’0
* - .”“ o"‘
“ L ajmssammE=E p* \g . i ‘”y
3. "--- o "‘00 pmlxlvzl mmmfunn | %"10 B 00" meX/V21 cempumn]
5\ i "' ’0" fastp_opt ---x--- | 5 "o‘ fastp_opt ---x---
o ¥ x NO-loCK ===ffu== = R No-lock ===fg===
= ' 2 2N-mutex T 8L R 2N-mutex i
— L ¢ -_ ’0
o 4 .
5 o i”
. L T L L
; 2 O
10 ': '0" __ 6 — t-----:’--------------*Il'-‘-‘: ------------------------ -x -- -x —
h . i “o‘
- »“x *
-:’---. ’ -- . ------------- 4 B]
T a
L .u:
:" , L i
.
:. ' LLLLLL LT TR LT e sssssssEEEEEEEEEEEEEEE . s EssEs s s NSNS NSNS ESEES NS EESEEEEEE L ¢
l -]]]]]]] 0 l l l l l
0 20 40 60 80 100 120 140 160 0 5 10 15 20 25 30

Number of PMIx clients

Figure 1: PMIx Get latency on IBM POWERS system (2 sockets/20 cores/160 hw threads)

PMIx database locking

The problem of scalable RW-locks is well known [3].

However, PMIx database has several characteristics that
distinguish it from the generic problem.

e KVDb has only one writer (PMIx server) thus no arbi-
tration between multiple writers is required.

e Write locks are only present in PMIx on-demand mode
where only a few keys expected to be exchanged.

e Readers are typically assigned on execution units (cores
or hardware threads) while the writer does not have a
dedicated hardware resource.

e Readers requesting the data are blocked waiting for the
completion on the out-of-band channel.

Improved locking scheme

Based on these observations, we prioritize a reader scal-
ability attribute and propose a 2N-lock scheme (fig. 4)
derived from the static approach [3]. The key difference
of the 2N-lock scheme is that it implements a writer-
preference policy typical for PMIx scenario.

PMIx server lock procedure:
sl. lock write (rwlock)

PMIx client lock procedure:
cl. lock read(rwlock)

Figure 3: Existing PMIx KVDb locking scheme

PMIx server lock procedure:
// Get a signaling lock

for i in 1 ... cli count do
sl. lock(cli[i].lock?2)

// Get the main lock

for i in 1 ... cli count do
s2. lock(cli[i].lockl)

| lockl || lock2 w | lockl || lock2 |!

PMIx i’th client lock procedure:
// Get the signaling lock

cl. lock(cli[i].lock?2)

// Get the main lock

c2. lock(cli[i].lockl)

// Release the signaling lock
c3. unlock(cli[i].lock?2)

Figure 4: Proposed PMIx KVDb locking scheme (2N-mutex)

Number of PMIXx clients

Figure 2: PMIx Get latency on Intel x86_64 Broadwell system (2 sockets, 28 cores)

Improved locking scheme(2)

The curve 2N-mutez (fig. 1 and 2) demonstrates that
on IBM system the performance of 2N-mutez is close
to a lockless case (curve no-lock). 2x on Intel system.

References

1] Ralph Castain, David Solt, Joshua Hursey, Aurelien Bouteiller
PMIx: Process Management for Exascale Environments. ACM,
New York, pp. 14:1-14:10, 2017

2] Chakraborty, Sourav and Subramoni, Hari and Perkins, Jonathan

and Panda, Dhabaleswar K. SHMEMPMI — Shared Memory
Based PMI for Improved Performance and Scalability. IEEE, New
York, pp. 6069, 2016

3] Hsieh, W.C. and Weihl, W.E Scalable Reader-Writer
LocksforParallel Systems. IEEE, New York, pp. 656-659, 1992

Contact information

e Artem Y. Polyakov, PhD
e Sr. Architect SW, Mellanox Technologies
e Fmail: artemp@mellanox.com

mailto:artemp@mellanox.com

