
A Scalable PMIx Database
Artem Y. Polyakov1, Joshua Ladd1, Elena Shipunova2, Boris I. Karasev1

1Mellanox Technologies, 2Intel, Inc.

Introduction

A Process Management Interface (PMI) is the component
of the HPC software stack that is responsible for interaction
between a Resource Manager and a parallel application.
In all PMI versions existing to date, the informational ex-
change between RM and application is organized in the
form of a key-value database (KVDb) that has Put, Get
operations and API-specific synchronization primitives.
The PMI Exascale (PMIx) (pseudo)standard [1] provides
advanced capabilities to enable efficient bootstrapping of
applications on emerging exascale systems.
This work focuses on the problem of scalable distribution of
the job-level and application-specific data from PMIx server
to PMIx client at the application side.

PMIx KVDb access specifics

• Shared memory technology significantly improves
intra-node KVDb access latency [2] for PMI1/2.

•PMIx relaxes synchronization assumptions guaran-
teed by PMI1/2 (on-demand key fetch feature).

•An extension of the approach proposed in [2] with
lock-based KVDb access coordination is required.

PMIx version and evaluation

•Considered PMIx version: 2.1
• For PMIx Get performance estimation a pmix_perf
microbenchmark from PMIx distribution was used.

•Processes were mapped by adjacent logical CPUs
yielding gradual filling of a certain hardware resource
before using the next one.

• Logical CPUs selection: cores for Intel system, hard-
ware threads (hw threads) for IBM system.

PMIx Get fast-path algorithm

1 Perform a thread shift: transfer of the control to PMIx
service thread (ensures the thread safety)

2 Lock KVDb for reading.

3 Attempt to fetch the requested key from the shared mem-
ory.

4 Unlock KVDb.
The curve pmix/v2.1 on figures 1 and 2 represents the
growth of PMIx Get operation latency on IBM and Intel
systems.
On both systems latency grows significantly with number
of PMIx clients.

PMIx Get fastpath optimizations

Profiling of PMIx Get showed that locking (steps 2 and 4,
see PMIx Get fastpath) is the bottleneck.
However, we start with a set of code cleanup optimizations
of obvious inefficiencies on step (3) in order to isolate and
attribute subsequent improvements to an improved locking
scheme.

• First, we eliminated thread shifting (step 1) from the
fast path of the Get algorithm as the shared memory
component does not access the global state of PMIx.

• Second, we removed unneeded memory allocations on the
critical path replacing them with pre-allocated objects
provided by PMIx Get caller.

The curve fastp-opt (figures 1 and 2) corresponds to PMIx
version 2.1 extended with optimizations above.

Existing locking scheme limitations

PMIx utilizes Pthread Read/Write locks (RW-locks) to
ensure that clients read accesses are consistent with the
server-side updates (write access).
As demonstrated by the curves pmix/2.1 and fastp-
opt, this approach does not scale well with the number
of application processes/PMIx clients (usually defined
by available logical CPUs).

 1

 10

 100

 1000

 0  20  40  60  80  100  120  140  160

la
te

nc
y,

 u
s

Number of PMIx clients

pmix/v2.1
fastp-opt

no-lock
2N-mutex

Figure 1: PMIx Get latency on IBM POWER8 system (2 sockets/20 cores/160 hw threads)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  5  10  15  20  25  30

la
te

nc
y,

 u
s

Number of PMIx clients

pmix/v2.1
fastp-opt

no-lock
2N-mutex

Figure 2: PMIx Get latency on Intel x86_64 Broadwell system (2 sockets, 28 cores)

PMIx database locking

The problem of scalable RW-locks is well known [3].
However, PMIx database has several characteristics that
distinguish it from the generic problem.

•KVDb has only one writer (PMIx server) thus no arbi-
tration between multiple writers is required.

•Write locks are only present in PMIx on-demand mode
where only a few keys expected to be exchanged.

•Readers are typically assigned on execution units (cores
or hardware threads) while the writer does not have a
dedicated hardware resource.

•Readers requesting the data are blocked waiting for the
completion on the out-of-band channel.

Improved locking scheme

Based on these observations, we prioritize a reader scal-
ability attribute and propose a 2N-lock scheme (fig. 4)
derived from the static approach [3]. The key difference
of the 2N-lock scheme is that it implements a writer-
preference policy typical for PMIx scenario.

PMIx
server

rwlock

PMIx
client

PMIx
client

s1

c1

PMIx server lock procedure:

s1. lock_write(rwlock)

PMIx client lock procedure:

c1. lock_read(rwlock)

Figure 3: Existing PMIx KVDb locking scheme

PMIx
server

lock1

PMIx
client

s2

PMIx server lock procedure:

// Get a signaling lock

for i in 1 ... cli_count do

s1. lock(cli[i].lock2)

// Get the main lock

for i in 1 ... cli_count do

s2. lock(cli[i].lock1)

PMIx i’th client lock procedure:

// Get the signaling lock

c1. lock(cli[i].lock2)

// Get the main lock

c2. lock(cli[i].lock1)

// Release the signaling lock

c3. unlock(cli[i].lock2)

lock2

s1

c2 c1 c3

lock1

PMIx
client

lock2

Figure 4: Proposed PMIx KVDb locking scheme (2N-mutex)

Improved locking scheme(2)

The curve 2N-mutex (fig. 1 and 2) demonstrates that
on IBM system the performance of 2N-mutex is close
to a lockless case (curve no-lock). 2x on Intel system.

References

[1] Ralph Castain, David Solt, Joshua Hursey, Aurelien Bouteiller
PMIx: Process Management for Exascale Environments. ACM,
New York, pp. 14:1–14:10, 2017

[2] Chakraborty, Sourav and Subramoni, Hari and Perkins, Jonathan
and Panda, Dhabaleswar K. SHMEMPMI – Shared Memory
Based PMI for Improved Performance and Scalability. IEEE, New
York, pp. 60–69, 2016

[3] Hsieh, W.C. and Weihl, W.E Scalable Reader-Writer
LocksforParallel Systems. IEEE, New York, pp. 656–659, 1992

Contact information

•Artem Y. Polyakov, PhD
• Sr. Architect SW, Mellanox Technologies
•Email: artemp@mellanox.com

mailto:artemp@mellanox.com

