
A Scalable PMIx Database

Artem Y. Polyakov
Mellanox Technologies
artemp@mellanox.com

Joshua Ladd
Mellanox Technologies
jladd@mellanox.com

Elena Shipunova
Intel, Inc.

elena.shipunova@intel.com

Boris I. Karasev
Mellanox Technologies
boriska@mellanox.com

ABSTRACT

This work presents a scalability analysis of a PMIx Database.
It is demonstrated that the main limiting factor is the scala-
bility of the locking subsystem. A new scheme called 2N-lock
is proposed that demonstrates two orders of magnitude im-
provement in the PMIx Get latency.

CCS CONCEPTS

�Computing methodologies�Concurrent algorithms;
� Software and its engineering � Distributed sys-
tems organizing principles;Parallel programming lan-
guages; Message oriented middleware;

KEYWORDS

Process Management Interface, HPC middleware, MPI, Re-
source management

ACM Reference Format:
Artem Y. Polyakov, Joshua Ladd, Elena Shipunova, and Boris

I. Karasev. 2018. A Scalable PMIx Database. In Proceedings of
EuroMPI 2018 Conference (EuroMPI’18). ACM, New York, NY,

USA, 2 pages.

1 INTRODUCTION

A Process Management Interface (PMI) is the component of
the HPC software stack that is responsible for interaction
between a Resource Manager (RM) and a parallel application.
In all PMI versions existing to date, the informational ex-
change between RM and application is organized in the form
of a key-value database (KVDb) that has Put, Get operations
and API-specific synchronization primitives.

The PMI Exascale (PMIx) (pseudo)standard [2] provides
advanced capabilities to enable efficient bootstrapping of ap-
plications on emerging exascale systems. The most important
distinguishing features of PMIx compared to its predecessors,
PMI1 and PMI2, are: a) extended job-level information that
allows exposing RM knowledge about a job environment that

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EuroMPI’18, September 2018, Barcelona, Spain

© 2018 Copyright held by the owner/author(s).

is typically required during an application startup, and b) on-
demand exchange of the application-specific data (commonly
referred to as direct modex in PMIx community).

This paper focuses on the problem of scalable distribution
of the job-level and application-specific data from PMIx server
(that represents RM) to PMIx client at the application side.

2 RELATED WORK

Intra-node KVDb access is known to be one of the major
limitations of existing PMI implementations. It mainly affects
the performance of a Get primitive. Chakraborty et al. [3]
analyzed the scalability of the PMI2 implementation in Slurm
RM and identified the message-based client-server communi-
cation as a significant bottleneck. They further explore the
benefits of a shared memory mechanism to implement KVDb
and conclude on its key advantages:

∙ Scalable memory consumption: KVDb is stored once
per compute node as opposed to traditional replication
of it on each application process.

∙ More parallelism as shared memory allows clients to ac-
cess KVDb independently without server involvement.

∙ Low latency as operations can transact at the speed of
CPU without requiring expensive system calls.

3 PMIX GET OPERATION DETAILS

PMIx relaxes synchronization assumptions that are guaran-
teed in PMI1 and PMI2. In particular, it allows on-demand
information fetching which requires an extension of the ap-
proach described in [3] with lock-based KVDb access coordi-
nation.

The PMIx Get fast-path algorithm is implemented as fol-
lows:
(1) Perform a thread shift ; this step assumes the transfer

of control to the PMIx service thread to ensure the
thread safety (only service thread manages a global
PMIx state and performs communications).

(2) Lock KVDb for reading.
(3) Attempt to fetch the requested key from the shared

memory.
(4) Unlock KVDb.
For PMIx Get latency evaluation we used a 20-core IBM

POWER8 system (two 10-core processors with 8 hardware
threads per core, 160 threads total), with logical CPUs rep-
resented by hardware threads.

PMIx version 2.1 was used as the code base. In order
to estimate PMIx primitives performance, we developed a

EuroMPI’18, September 2018, Barcelona, Spain A. Polyakov et al.

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160

la
te

nc
y,

 u
s

Number of PMIx clients

v2.1
fastp-opt
no-lock

2N-mutex

Figure 1: PMIx Get latency on POWER8 system

microbenchmark called pmix perf that is included in PMIx
distribution starting from version 2.0. Processes were mapped
by adjacent logical CPUs yielding gradual filling of a certain
hardware resource before using to the next one.

The curve v2.1 on fig. 1 represents the growth of PMIx Get
operation latency on POWER8 system where a level of 460 us
is reached on a fully-occupied node.

4 CODE PATH OPTIMIZATIONS

Profiling the PMIx Get implementation shows that most of
the time is spent on locking steps (2 and 4). However, we
start with a set of code cleanup optimizations of obvious
inefficiencies in step (3) in order to isolate and attribute
subsequent improvements to an improved locking scheme.

First, we removed thread shifting (1) from the fast path
of the Get algorithm as the shared memory component does
not access the global state of PMIx. Second, we eliminated
extra memory allocations on the critical path replacing them
with pre-allocated objects provided by PMIx Get caller.

The curve fastp-opt (fig. 1) corresponds to PMIx v2.1
updated with these optimizations. For up to 8 clients (one
core boundary) the performance is improved significantly and
comparison with the lockless version (curve no-lock, fig. 1)
confirms that one-core performance is very close to an optimal.
However, as an application scales out of a core the advantage
rapidly decreases and performance tends to the level of v2.1.

5 LOCKING OPTIMIZATION

PMIx utilizes Read/Write locks (RW-locks) to ensure that
a client’s read accesses are consistent with the server-side
updates (write access). As was demonstrated in the previous
section, pthread RW-lock implementation currently used in
PMIx is not scalable.

The problem of scalable RW-locks is well known [1, 4].
However, PMIx database has several characteristics that
distinguish it from the general problem.

∙ KVDb has only one writer (PMIx server) thus no arbi-
tration between multiple writers is required.

∙ Write locks are only present in PMIx on-demand mode
where only a few keys expected to be exchanged.

∙ Readers are typically assigned on execution units (cores
or hardware threads) while the writer does not have
dedicated hardware resource.

∙ Readers requesting the data are blocked waiting for
the completion on the out-of-band channel.

Based on these observations, we prioritize a reader scalability
attribute and propose the 2N-lock scheme derived from the
static approach described in [4]. The key difference of the
2N-lock scheme is that it implements a writer-preference pol-
icy typical for PMIx scenario. Each reader has an individual
pair of locks (𝜇𝑖 and 𝜈𝑖). 𝜈𝑖 is used by a writer to prevent new
readers from getting the lock. The 2N-lock has the following
acquisition logic assuming that the number of readers is 𝑁 :

Writer : 1) 𝑙𝑜𝑐𝑘(𝜈𝑖), 𝑖 ∈ [1, 𝑁]; 2) 𝑙𝑜𝑐𝑘(𝜇𝑖), 𝑖 ∈ [1, 𝑁].
𝑖th reader : 1) 𝑙𝑜𝑐𝑘(𝜇𝑖); 2) 𝑡𝑟𝑦𝑙𝑜𝑐𝑘(𝜈𝑖); 3) if 𝜈𝑖 is acquired -

𝑢𝑛𝑙𝑜𝑐𝑘(𝜈𝑖), the lock is taken, else - 𝑢𝑛𝑙𝑜𝑐𝑘(𝜇𝑖) and block on
𝜈𝑖 giving the writer a precedence.

Compared to the pthread-based RW-locks, 2N-lock avoids
cache-coherency traffic in read-dominated workloads [1].

The curve 2N-lock , fig. 1 shows that the latency of the new
scheme is similar to a lockless configuration. Depending on
readers contention level, the write lock latency varies in the
[0.05, 1.2] ms range. Considering the KVDb specifics outlined
above, a low contention level is expected in a real scenario.
We verified that using pmix perf tool (on-demand mode) on
a 32-node Intel x86 64 system with 28 cores per node.

In general, 2N-lock provides a lockless-level latency for
the full-data exchange mode while maintaining reasonable
performance characteristics for the on-demand mode.

6 CONCLUSIONS

In this work, we analyzed the performance and scalability of
PMIx Database. The main conclusions are:

∙ Pthread implementation of read/write locks has limited
scalability.

∙ Second-level limiting factors: thread shifting and dy-
namic memory allocations on the PMIx Get fast-path,
were identified and eliminated.

∙ Finally, a new scalable locking scheme called 2N-lock
was proposed. It is planned for inclusion in PMIx 2.2.0.

REFERENCES
[1] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V.J. Marathe, and N.

Shavit. 2013. NUMA-aware reader-writer locks. In Proceedings of
the 18th ACM SIGPLAN symposium on Principles and practice
of parallel programming. ACM, New York, NY, USA, 157–166.
https://doi.org/10.1145/2442516.2442532

[2] Ralph H. Castain, David Solt, Joshua Hursey, and Aurelien
Bouteiller. 2017. PMIx: Process Management for Exascale En-
vironments. In Proceedings of the 24th European MPI Users’
Group Meeting (EuroMPI ’17). ACM, New York, NY, USA, Arti-
cle 14, 10 pages. https://doi.org/10.1145/3127024.3127027

[3] Sourav Chakraborty, Hari Subramoni, Jonathan Perkins, and Dha-
baleswar K. Panda. 2016. SHMEMPMI – Shared Memory Based
PMI for Improved Performance and Scalability. In Proceedings of
the 24th European MPI Users’ Group Meeting (CCGrid). IEEE,
60–69. https://doi.org/10.1109/CCGrid.2016.99

[4] W.C. Hsieh and W.E Weihl. 1992. Scalable Reader-Writer Locks-
forParallel Systems. In Proceedings of the Sixth International
Parallel Processing Symposium. IEEE, 656–659. https://doi.org/
10.1109/IPPS.1992.222989

https://doi.org/10.1145/2442516.2442532
https://doi.org/10.1145/3127024.3127027
https://doi.org/10.1109/CCGrid.2016.99
https://doi.org/10.1109/IPPS.1992.222989
https://doi.org/10.1109/IPPS.1992.222989

	Abstract
	1 Introduction
	2 Related work
	3 PMIx Get operation details
	4 Code path optimizations
	5 Locking optimization
	6 Conclusions
	References

