
Improving Support of MPI+OpenMP Applications
Geoffroy R. Vallée

Oak Ridge National Laboratory
Oak Ridge, Tennessee
valleegr@ornl.gov

David Bernholdt
Oak Ridge National Laboratory

Oak Ridge, Tennessee
bernholdtde@ornl.gov

ABSTRACT
The execution of hybrid applications, i.e., a combination of MPI
for inter-node parallelism and a threading solution for on-node
parallel, is perceived as a key option to achieve exascale. Unfortu-
nately, such options have been historically developed by separate
communities, resulting in challenges to deploy complex scientific
hybrid applications on large scale systems. This work proposes a
design for capabilities that would enable the precise definition and
deployment of application layouts on compute node (i.e., placement
of MPI ranks and threads). Our contributions are: (i) a new notation
scheme that can be used to define complex “layouts”; (ii) a new
runtime library for the coordination of the MPI and OpenMP run-
times; (iii) a set of new components for the MPI runtime in order
to support our concept of layouts.

ACM Reference Format:
Geoffroy R. Vallée andDavid Bernholdt. 1997. Improving Support ofMPI+OpenMP
Applications. In Proceedings of The EuroMPI 2018 Conference (EuroMPI 2018).
ACM, New York, NY, USA, Article 4, 2 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
MPI [5] is already widely used together with other runtime environ-
ments (the so-called MPI+X approach). Modern MPI implementa-
tions typically make internal use of threads to facilitate the progress
of communications while computation proceeds on other threads,
and the MPI standard includes features to manage some of the inter-
actions between user threads and MPI’s use of threads. Much more
is needed but even within the current standard and implementation,
there is room for significant improvements. We are investigating in-
teroperability with user-facing thread-based runtime environments,
OpenMP being the canonical example. We intend to develop and
implement abstractions and APIs that allow better coordination
between runtime environments that rely on threads. We are inter-
ested in the potential to coordinate threads and process placement
betweenMPI and other runtimes, like OpenMP. Currently, these are
very loosely coupled, in the interest of maintaining independence of
the software stacks. However, as node architectures become more
complex, it becomes harder to achieve the best placement, and the
negative consequences of poor placement also increase [4, 7–10].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EuroMPI 2018, September 2018, Barcelona, Spain
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

We propose abstractions and interfaces that allow runtimes to share
information and coordinate process/thread placement.

2 RELATEDWORK
In the context of this work, research on the optimization of hy-
brid applications can be categorized as follow. The first approach
is to improve existing standards. The MPI forum currently has a
hardware topology working group [6], which investigates what
modifications to the standard could be done to best expose the
underlying hardware to both MPI and hybrid applications: (i) by
exposing the underlying hardware through hierarchical communi-
cators, and (ii) through the standardization of mpirun/mpiexec to
support portable mapping and binding directives. While these stran-
dization efforts are important, we believe that the placement of MPI
ranks and threads is not suitable for standardization since mainly a
platform specific problem for which the resource managers and the
runtimes needs to be involved.A second approach is to modify the
implementation of standards. To the best of our knowledge, most
research is focusing on optimizing runtime features to improve the
execution of hybrid applications or to improve threading support
within the context of MPI [1–3], and not on the coordination of
existing runtimes. The final option is to investigate resource man-
agers and system tools to facilitate and optimize the execution of
hybrid applications, through the extensions of the resource/job
managers. Home-made system tools have been developed over the
years at leadership computing centers to help users express their
requirements and translate their requirements to directives that
the resource manager will understand. This type of tools support
only fairly simple layouts (e.g., identical layouts for all MPI ranks)
because of the limited control of a user-level tool over runtimes.

3 ARCHITECTURE
The placement of MPI ranks and threads on processor resources
and/or on accelerators is a problem that is mainly application-
specific, meaning that there is no one-fit-all solution. Figure 1 gives
a schematic view of a layout. Because we need to support incom-
patible layouts, we decided to support the definition of layouts
upon application execution. The first requirement is to let the user
describe these layouts. We opted to define an explicit layout de-
scription method where the user precisely defines where ranks and
threads are deployed. We propose a new notation to describe both

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-
00OR22725 with the U.S. Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


EuroMPI 2018, September 2018, Barcelona, Spain Geoffroy R. Vallée and David Bernholdt

Figure 1: Example of a complex layout targeting the OLCF
Summit system (the smaller squares represent hardware
threads; groups of four small squares represent a core;
groups of cores represent a NUMAnode; 2 NUMAnodes rep-
resent an entire compute node; each NUMA node is linked
to 3 GPUs)

the placement of MPI ranks and threads: [runtime ID],[Parent con-
text][target HW level][Map], where the runtime ID is a unique string
representing a target runtime (MPI or OpenMP); Parent context is
used to define dependencies between each entry. For example, the
first entry for OpenMP defines MPI-0 as the Parent context, which
means that the master thread is the first MPI rank on the node.
The target HW level represents the target hardware components
(e.g., Core). Finally, the Map describes where the rank/thread needs
to be deployed and in which order. Note that the hierarchy of the
underlying hardware needs to be reflected to avoid any possible
confusion. While our layout description can seem cumbersome, we
assume that this description is applicable to all compute node of
the job, and that it is possible to develop tools to assist the users.

All Open MPI mappers are required to have two functions: one
that maps the ranks on nodes that is performed before ranks are
actually deployed, and one that maps the ranks on resources upon
deployment on the node. Our newmapper, explicit, follows the same
interfaces and explicitly maps all ranks based on the layout defined
by the user. Once the layout is defined and submitted, via an argu-
ment to the mpirun command, the MPI implementation deploys
first the MPI ranks, while in the context of OpenMP, the defini-
tion of places and policies applied during the creation of threads
via environment variables can be used to precisely place threads.
Practically, we provide a new Open MPI mapper that registers an
MCA parameter for the definition of layouts. Our mapper parses
the MCA parameter defining the layout and places all MPI ranks
accordingly. In addition, it publishes the layout using PMIx to make
it available to other libraries.

Once the MPI ranks are deployed on the nodes, it is necessary
to constraint, for each MPI rank, where threads can be created. To
avoid modifying the OpenMP runtime, we opted for the implemen-
tation of a helper library that retrieves the layout through PMIx and
sets the OMP_PLACES environment variable. This library, named
the MPI OpenMP Coordination library (MOC) also ensures that the
environment variable is set based on the current MPI rank, allowing
for rank specific layouts. To do so, MOC calculates and publishes
through PMIx the actual rank but also the rank number on the node.
Since MPI is the first runtime to act on a compute node, it virtually

shares all published data with any PMIx compliant runtime or li-
brary. Practically, as PMIx can be viewed as a key/value store, we
reserve a key name (MOC_LAYOUT) that is unique and available
only in the scope of the job. This approach allows us to have a
solution that let users specify a layout at the job level, facilitating
the investigation of the performance impact of various layouts and
for various computing platforms. Note that the MOC library needs
to be performed before the initialization of the OpenMP runtime
and therefore requires the application to call MOC_init() right after
MPI_Init(). The MOC library also performs a few MPI calls to figure
out the rank of the current process and the order of the ranks on
the node (so we know that we are the nth rank on the node).

4 CONCLUSION
We presented the concept of layouts that let scientists precisely
define the placement of MPI ranks and OpenMP threads, imple-
mented via a new mapper for Open MPI and a new runtime helper
library. We also propose to investigate the concept of dynamic
layouts, i.e., layouts that can be changed during the execution of
applications, which is especially of interest to applications that are
composed of phases that potentially require different layouts. The
support of such layouts will require more extensive runtime-level
modifications (e.g., OpenMP runtimes are very static in nature).

REFERENCES
[1] Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan Balaji, and Satoshi Matsuoka.

2015. MPI+Threads: Runtime Contention and Remedies. In Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP 2015). ACM, New York, NY, USA, 239–248. https://doi.org/10.1145/
2688500.2688522

[2] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev
Thakur. 2010. Fine-Grained Multithreading Support for Hybrid Threaded MPI
Programming. Int. J. High Perform. Comput. Appl. 24, 1 (Feb. 2010), 49–57.
https://doi.org/10.1177/1094342009360206

[3] Alex Brooks, Hoang-Vu Dang, Nikoli Dryden, and Marc Snir. 2015. PPL: An
Abstract Runtime System for Hybrid Parallel Programming. In Proceedings of
the First International Workshop on Extreme Scale Programming Models and Mid-
dleware (ESPM ’15). ACM, New York, NY, USA, 2–9. https://doi.org/10.1145/
2832241.2832246

[4] François Broquedis, Nathalie Furmento, Brice Goglin, Raymond Namyst, and
Pierre-André Wacrenier. 2009. Dynamic Task and Data Placement over NUMA
Architectures: An OpenMP Runtime Perspective. In Proceedings of the 5th
International Workshop on OpenMP: Evolving OpenMP in an Age of Extreme
Parallelism (IWOMP ’09). Springer-Verlag, Berlin, Heidelberg, 79–92. https:
//doi.org/10.1007/978-3-642-02303-3_7

[5] The Message Passing Forum. 1994. "MPI: a Message-Passing Interface Standard".
[6] MPI Forum Hardware Topology Working Group. [n. d.].

https://github.com/mpiwg-hw-topology.
[7] Emmanuel Jeannot and Guillaume Mercier. 2010. Near-optimal Placement of

MPI Processes on Hierarchical NUMA Architectures. In Proceedings of the 16th
International Euro-Par Conference on Parallel Processing: Part II (Euro-Par’10).
Springer-Verlag, Berlin, Heidelberg, 199–210. http://dl.acm.org/citation.cfm?id=
1885276.1885299

[8] Haoqiang Jin, Dennis Jespersen, Piyush Mehrotra, Rupak Biswas, Lei Huang, and
Barbara Chapman. 2011. High Performance Computing Using MPI and OpenMP
on Multi-core Parallel Systems. Parallel Comput. 37, 9 (Sept. 2011), 562–575.
https://doi.org/10.1016/j.parco.2011.02.002

[9] A. Mazouz, S. A. A. Touati, and D. Barthou. 2011. Performance evaluation and
analysis of thread pinning strategies on multi-core platforms: Case study of SPEC
OMP applications on intel architectures. In 2011 International Conference on High
Performance Computing Simulation. 273–279. https://doi.org/10.1109/HPCSim.
2011.5999834

[10] Vishwanath Venkatesan, Rakhi Anand, Jaspal Subhlok, and Edgar Gabriel. 2013.
Optimized Process Placement for Collective I/O Operations. In Proceedings of
the 20th European MPI Users’ Group Meeting (EuroMPI ’13). ACM, New York, NY,
USA, 31–36. https://doi.org/10.1145/2488551.2488567

https://doi.org/10.1145/2688500.2688522
https://doi.org/10.1145/2688500.2688522
https://doi.org/10.1177/1094342009360206
https://doi.org/10.1145/2832241.2832246
https://doi.org/10.1145/2832241.2832246
https://doi.org/10.1007/978-3-642-02303-3_7
https://doi.org/10.1007/978-3-642-02303-3_7
http://dl.acm.org/citation.cfm?id=1885276.1885299
http://dl.acm.org/citation.cfm?id=1885276.1885299
https://doi.org/10.1016/j.parco.2011.02.002
https://doi.org/10.1109/HPCSim.2011.5999834
https://doi.org/10.1109/HPCSim.2011.5999834
https://doi.org/10.1145/2488551.2488567

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 ARCHITECTURE
	4 Conclusion
	References

