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INTRODUCTION

Unimem

Unimem is ARM-based exascale architecture
for High Performance Computing. Unimem
provides unified memory address across
multiple nodes and follows PGAS (Parti-
tioned Global Address Space) model. In this
project, we will develop MPI for Unimem.

OFI libfabric

OFI is a framework to export fabric com-
munication services and libfabric provides
a unified user-space API to communica-
tion runtimes such as MPI or SHMEM.
Each hardware vendor implements its OFI
provider to support the functionality of spe-
cific hardware.

MPICH+OFI+Unimem

One of the most leveraged state–of–the–
art approaches to develop MPI runtimes
for new hardware is developing an OFI
provider. We developed an OFI provider
for Unimem and applied it under MPICH
CH4. We implemented the OFI provider
features mandatory to operate MPICH CH4
first, then optimized our OFI provider for
better performance.
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UNIMEM APIS
Virtualized Mailbox (vmbox) is a sim-

ple hardware queue for control messages
with 192-bit fixed size. Unimem DMA is an
RDMA (Remote Direct Memory Access) en-
gine based on FPGA hardware.
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Allocate DMA-able Memory: Unimem
architecture supports RDMA only for a spe-
cific memory address range.

Register Remote Virtual Address: The
remote address should be registered to the
local RDMA engine to prepare the route.

LIBFABRIC FOR MPICH
To operate MPICH CH4 with libfabric,

the fundamental OFI provider features are:

• Basic libfabric features: fabric, domain,
endpoint, and completion queue.

• FI_RDM: Connectionless endpoint and
connection mngmt. for remote node.

• FI_MSG, FI_MULTI_RECV: Basic
message passing and receiving multi-
ple messages by posting a single large
receive buffer.

• FI_RMA was also required for long
message transfer but we implemented
a temporary patch in MPICH.

DESIGN AND IMPLEMENTATION

Bounce Buffers: Unimem DMA only
supports RMA operations from a specific
memory area, as provided by the alloc-
_dmable_buf() function from the Unimem
DMA API. User buffers residing outside this
memory region musts be copied to interme-
diate bounce buffers in our OFI provider.

Direct Copy: If the user buffer is DMA-
able, we can directly transfer from the user
buffer to an Active Message buffer in MPICH.
This route reduces 2 copies while transfer-
ring the message, so it is necessary to provide
proper buffer allocation function to users.
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Latency performance (osu_latency) and bandwidth performance (osu_bw benchmark)
We measured the performance of our implementation with OSU micro-benchmarks. Our

implementation could run the whole OSU micro-benchmarks with no problem.

• osu_latency : 23.41 µs (with bounce buffer) →14.47 µs (direct copy to user buffer)
• osu_bw : 360.59 MB/s peak bandwidth

(1) Without copying to intermediate bounce buffers, there was significant latency perfor-
mance improvement. (2) There was bandwidth degradation especially for 16KB size messages
because MPICH changes send message protocol to long message transfer (lmt) at this size,
which requires more control messages for transfers.

CONCLUSION

We developed an OFI provider for the
Unimem architecture and applied our OFI
provider to the MPICH CH4 runtime.

For future work, we need to implement
additional optimizations to improve latency.
For example, small messages can be trans-
ferred by directly writing to preallocated
buffers in the receiver side (eager transfers).
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