
TOWARD DEVELOPMENT OF OFI PROVIDER
TO SUPPORT MPICH OVER UNIMEM

Kyunghun Kim1, Polydoros Petrakis2, Manolis Ploumidis2, Yanfei Guo3, Kenneth
Raffenetti3, Paul Carpenter1, Nikolaos Dimou2, Pavan Balaji3, Antonio J. Peña1

Barcelona Supercomputing Center (BSC)1, Foundation for Research and Technology2, Argonne National Laboratory3

INTRODUCTION

Unimem

Unimem is ARM-based exascale architecture
for High Performance Computing. Unimem
provides unified memory address across
multiple nodes and follows PGAS (Parti-
tioned Global Address Space) model. In this
project, we will develop MPI for Unimem.

OFI libfabric

OFI is a framework to export fabric com-
munication services and libfabric provides
a unified user-space API to communica-
tion runtimes such as MPI or SHMEM.
Each hardware vendor implements its OFI
provider to support the functionality of spe-
cific hardware.

MPICH+OFI+Unimem

One of the most leveraged state–of–the–
art approaches to develop MPI runtimes
for new hardware is developing an OFI
provider. We developed an OFI provider
for Unimem and applied it under MPICH
CH4. We implemented the OFI provider
features mandatory to operate MPICH CH4
first, then optimized our OFI provider for
better performance.

Unimem

OFI

MPICH

Virtualized
Mailbox

Unimem
DMA

Unimem Provider

CH4 OFI netmod

UNIMEM APIS
Virtualized Mailbox (vmbox) is a sim-

ple hardware queue for control messages
with 192-bit fixed size. Unimem DMA is an
RDMA (Remote Direct Memory Access) en-
gine based on FPGA hardware.

Vmbox Message

RDMA Transfer

RTS: message size

CTS: buffer address

RDMA Write

COMPLETE

Allocate
DMA-able
Memory

Register
“Remote”
Address

Sender Receiver

Allocate DMA-able Memory: Unimem
architecture supports RDMA only for a spe-
cific memory address range.

Register Remote Virtual Address: The
remote address should be registered to the
local RDMA engine to prepare the route.

LIBFABRIC FOR MPICH
To operate MPICH CH4 with libfabric,

the fundamental OFI provider features are:

• Basic libfabric features: fabric, domain,
endpoint, and completion queue.

• FI_RDM: Connectionless endpoint and
connection mngmt. for remote node.

• FI_MSG, FI_MULTI_RECV: Basic
message passing and receiving multi-
ple messages by posting a single large
receive buffer.

• FI_RMA was also required for long
message transfer but we implemented
a temporary patch in MPICH.

DESIGN AND IMPLEMENTATION

Bounce Buffers: Unimem DMA only
supports RMA operations from a specific
memory area, as provided by the alloc-
_dmable_buf() function from the Unimem
DMA API. User buffers residing outside this
memory region musts be copied to interme-
diate bounce buffers in our OFI provider.

Direct Copy: If the user buffer is DMA-
able, we can directly transfer from the user
buffer to an Active Message buffer in MPICH.
This route reduces 2 copies while transfer-
ring the message, so it is necessary to provide
proper buffer allocation function to users.

User

MPICH

OFI

Sender Receiver

User Buffer
(sender)

Bounce Buffer
(sender)

Active Message
Buffer

User Buffer
(receiver)

Bounce Buffer
(receiver)

Memory Copy

RDMA Transfer

RESULTS

0

5

10

15

20

25

30

35

40

45

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

La
te

n
cy

 (
μ

s)

Message size (byte)

Bounce Buffer Direct Copy

0

50

100

150

200

250

300

350

400

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

B
an

d
w

id
th

 (
M

B
/s

)

Message size (byte)

Bounce Buffer Direct Copy

Latency performance (osu_latency) and bandwidth performance (osu_bw benchmark)
We measured the performance of our implementation with OSU micro-benchmarks. Our

implementation could run the whole OSU micro-benchmarks with no problem.

• osu_latency : 23.41 µs (with bounce buffer) →14.47 µs (direct copy to user buffer)
• osu_bw : 360.59 MB/s peak bandwidth

(1) Without copying to intermediate bounce buffers, there was significant latency perfor-
mance improvement. (2) There was bandwidth degradation especially for 16KB size messages
because MPICH changes send message protocol to long message transfer (lmt) at this size,
which requires more control messages for transfers.

CONCLUSION

We developed an OFI provider for the
Unimem architecture and applied our OFI
provider to the MPICH CH4 runtime.

For future work, we need to implement
additional optimizations to improve latency.
For example, small messages can be trans-
ferred by directly writing to preallocated
buffers in the receiver side (eager transfers).

REFERENCES

Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K Panda.
High performance RDMA-based MPI implementation
over InfiniBand. International Journal of Parallel Program-
ming, 32(3):167–198, 2004

Sung-Eun Choi, Howard Pritchard, James Shimek,
James Swaro, Zachary Tiffany, and Ben Turrubiates. An
implementation of OFI libfabric in support of multi-
threaded PGAS solutions. In 9th International Conference
on Partitioned Global Address Space Programming Models
(PGAS), pages 59–69. IEEE, 2015


